129 research outputs found

    Application of exhaust gas fuel reforming in diesel and homogeneous charge compression ignition (HCCI) engines fuelled with biofuels

    Get PDF
    This is the post-print version of the final paper published in Energy. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2007 Elsevier B.V.This paper documents the application of exhaust gas fuel reforming of two alternative fuels, biodiesel and bioethanol, in internal combustion engines. The exhaust gas fuel reforming process is a method of on-board production of hydrogen-rich gas by catalytic reaction of fuel and engine exhaust gas. The benefits of exhaust gas fuel reforming have been demonstrated by adding simulated reformed gas to a diesel engine fuelled by a mixture of 50% ultra low sulphur diesel (ULSD) and 50% rapeseed methyl ester (RME) as well as to a homogeneous charge compression ignition (HCCI) engine fuelled by bioethanol. In the case of the biodiesel fuelled engine, a reduction of NOx emissions was achieved without considerable smoke increase. In the case of the bioethanol fuelled HCCI engine, the engine tolerance to exhaust gas recirculation (EGR) was extended and hence the typically high pressure rise rates of HCCI engines, associated with intense combustion noise, were reduced

    Effect of inlet valve timing and water blending on bioethanol HCCI combustion using forced induction and residual gas trapping

    Get PDF
    This is the post-print version of the final paper published in Fuel. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2007 Elsevier B.V.It has been shown previously that applying forced induction to homogeneous charge compression ignition (HCCI) combustion of bioethanol with residual gas trapping, results in a greatly extended engine load range compared to normal aspiration operation. However, at very high boost pressures, very high cylinder pressure rise rates develop. The approach documented here explores two ways that might have an effect on combustion in order to lower the maximum pressure rise rates and further improve the emissions of oxides of nitrogen (NOx); inlet valve timing and water blending. It was found that there is an optimal inlet valve timing. When the timing was significantly advanced or retarded away from the optimal, the combustion phasing could be retarded for a given lambda (excess air ratio). However, this would result in higher loads and lower lambdas for a given boost pressure, with possibly higher NOx emissions. Increasing the water content in ethanol gave similar results as the non-optimal inlet valve timing

    Physics of puffing and microexplosion of emulsion fuel droplets

    Get PDF
    The physics of water-in-oil emulsion droplet microexplosion/puffing has been investigated using high-fidelity interface-capturing simulation. Varying the dispersed-phase (water) sub-droplet size/location and the initiation location of explosive boiling (bubble formation), the droplet breakup processes have been well revealed. The bubble growth leads to local and partial breakup of the parent oil droplet, i.e., puffing. The water sub-droplet size and location determine the after-puffing dynamics. The boiling surface of the water sub-droplet is unstable and evolves further. Finally, the sub-droplet is wrapped by boiled water vapor and detaches itself from the parent oil droplet. When the water sub-droplet is small, the detachment is quick, and the oil droplet breakup is limited. When it is large and initially located toward the parent droplet center, the droplet breakup is more extensive. For microexplosion triggered by the simultaneous growth of multiple separate bubbles, each explosion is local and independent initially, but their mutual interactions occur at a later stage. The degree of breakup can be larger due to interactions among multiple explosions. These findings suggest that controlling microexplosion/puffing is possible in a fuel spray, if the emulsion-fuel blend and the ambient flow conditions such as heating are properly designed. The current study also gives us an insight into modeling the puffing and microexplosion of emulsion droplets and sprays.This article has been made available through the Brunel Open Access Publishing Fund

    Puffing-enhanced fuel/air mixing of an evaporating n-decane/ethanol emulsion droplet and a droplet group under convective heating

    Get PDF
    Pu ng of a decane/ethanol emulsion droplet and a droplet group under convective heating and its e ects on fuel/air mixing are investigated by direct numerical simulation (DNS) that resolves all the liquid/gas and liquid/liquid interfaces. With distinct di erences in the boiling point between decane and ethanol, the embedded ethanol subdroplets can be superheated and boil explosively. Pu ng, i.e. ejection of ethanol vapour, occurs from inside the parent decane droplet, causing secondary breakup of the droplet. The ejected ethanol vapour mixes with the outer gas mixture composed of air and vapour of the primary fuel decane, and its e ects on fuel/air mixing can be characterised by the scalar dissipation rates (SDRs). For the primary fuel SDR, the cross-scalar di usion due to ethanol vapour pu ng plays a dominant role in enhancing the micromixing. When the vapour ejection direction is inclined toward the wake direction, the wake is elongated, but the shape of the stoichiometric mixture fraction iso-surface is not changed much, indicating a limited e ect on droplet grouping in a spray. On the other hand, when the ejection direction is inclined toward the transverse direction, the stoichiometric surface is pushed further away in the transverse direction and its topology is changed by the pu ng. The trajectories of ejected ethanol vapour pockets can be predicted by the correlation obtained for a jet in cross ow, and the vapour pockets may reach a few diameters away from the droplet. Therefore, in a multiple-droplet con guration, the transverse ethanol vapour ejection due to pu ng may transiently change the droplet grouping characteristics. In simulation cases with multiple droplets, the interaction changing the droplet grouping due to pu ng has been con rmed, especially for droplets in the mostupstream position in a spray. This implies that pu ng should be accurately included in the mixing and combustion modelling of such a biofuel-blended diesel spray process.Financial support from the Engineering and Physical Sciences Research Council (EPSRC), grant No. EP/J018023/

    Soft set theory and topology

    Full text link
    [EN] In this paper we study and discuss the soft set theory giving new definitions, examples, new classes of soft sets, and properties for mappings between different classes of soft sets. Furthermore, we investigate the theory of soft topological spaces and we present new definitions, characterizations, and properties concerning the soft closure, the soft interior, the soft boundary, the soft continuity, the soft open and closed maps, and the soft homeomorphism.Georgiou, DN.; Megaritis, AC. (2014). Soft set theory and topology. Applied General Topology. 15(1):93-109. doi:http://dx.doi.org/10.4995/agt.2014.2268.93109151Aktaş, H., & Çağman, N. (2007). Soft sets and soft groups. Information Sciences, 177(13), 2726-2735. doi:10.1016/j.ins.2006.12.008Ali, M. I., Feng, F., Liu, X., Min, W. K., & Shabir, M. (2009). On some new operations in soft set theory. Computers & Mathematics with Applications, 57(9), 1547-1553. doi:10.1016/j.camwa.2008.11.009Aygünoğlu, A., & Aygün, H. (2011). Some notes on soft topological spaces. Neural Computing and Applications, 21(S1), 113-119. doi:10.1007/s00521-011-0722-3Çağman, N., & Enginoğlu, S. (2010). Soft set theory and uni–int decision making. European Journal of Operational Research, 207(2), 848-855. doi:10.1016/j.ejor.2010.05.004Çağman, N., & Enginoğlu, S. (2010). Soft matrix theory and its decision making. Computers & Mathematics with Applications, 59(10), 3308-3314. doi:10.1016/j.camwa.2010.03.015Çağman, N., Karataş, S., & Enginoglu, S. (2011). Soft topology. Computers & Mathematics with Applications, 62(1), 351-358. doi:10.1016/j.camwa.2011.05.016Chen, D., Tsang, E. C. C., Yeung, D. S., & Wang, X. (2005). The parameterization reduction of soft sets and its applications. Computers & Mathematics with Applications, 49(5-6), 757-763. doi:10.1016/j.camwa.2004.10.036Feng, F., Jun, Y. B., & Zhao, X. (2008). Soft semirings. Computers & Mathematics with Applications, 56(10), 2621-2628. doi:10.1016/j.camwa.2008.05.011Hussain, S., & Ahmad, B. (2011). Some properties of soft topological spaces. Computers & Mathematics with Applications, 62(11), 4058-4067. doi:10.1016/j.camwa.2011.09.051O. Kazanci, S. Yilmaz and S. Yamak, Soft Sets and Soft BCH-Algebras, Hacettepe Journal of Mathematics and Statistics 39, no. 2 (2010), 205-217.KHARAL, A., & AHMAD, B. (2011). MAPPINGS ON SOFT CLASSES. New Mathematics and Natural Computation, 07(03), 471-481. doi:10.1142/s1793005711002025Maji, P. K., Roy, A. R., & Biswas, R. (2002). An application of soft sets in a decision making problem. Computers & Mathematics with Applications, 44(8-9), 1077-1083. doi:10.1016/s0898-1221(02)00216-xMaji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers & Mathematics with Applications, 45(4-5), 555-562. doi:10.1016/s0898-1221(03)00016-6P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, J. Fuzzy Math. 9, no. 3 (2001), 589-602.MAJUMDAR, P., & SAMANTA, S. K. (2008). SIMILARITY MEASURE OF SOFT SETS. New Mathematics and Natural Computation, 04(01), 1-12. doi:10.1142/s1793005708000908Min, W. K. (2011). A note on soft topological spaces. Computers & Mathematics with Applications, 62(9), 3524-3528. doi:10.1016/j.camwa.2011.08.068Molodtsov, D. (1999). Soft set theory—First results. Computers & Mathematics with Applications, 37(4-5), 19-31. doi:10.1016/s0898-1221(99)00056-5D. A. Molodtsov, The description of a dependence with the help of soft sets, J. Comput. Sys. Sc. Int. 40, no. 6 (2001), 977-984.D. A. Molodtsov, The theory of soft sets (in Russian), URSS Publishers, Moscow, 2004.D. A. Molodtsov, V. Y. Leonov and D. V. Kovkov, Soft sets technique and its application, Nechetkie Sistemy i Myagkie Vychisleniya 1, no. 1 (2006), 8-39.D. Pei and D. Miao, From soft sets to information systems, In: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang, eds., Proceedings of Granular Computing, IEEE, 2 (2005), 617-621.Shabir, M., & Naz, M. (2011). On soft topological spaces. Computers & Mathematics with Applications, 61(7), 1786-1799. doi:10.1016/j.camwa.2011.02.006Shao, Y., & Qin, K. (2011). The lattice structure of the soft groups. Procedia Engineering, 15, 3621-3625. doi:10.1016/j.proeng.2011.08.678I. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca, Remarks on soft topological spaces, Annals of Fuzzy Mathematics and Informatics 3, no. 2 (2012), 171-185.Zou, Y., & Xiao, Z. (2008). Data analysis approaches of soft sets under incomplete information. Knowledge-Based Systems, 21(8), 941-945. doi:10.1016/j.knosys.2008.04.00

    Diesel exhaust-gas reforming for H2 addition to an aftertreatment unit

    Get PDF
    This is the post-print version of the final paper published in Chemical Engineering Journal. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The work described in this paper has been undertaken as part of the design of an integrated system comprising a diesel engine, an exhaust-gas fuel reformer and a NOx aftertreatment unit. The exhaust-gas reformer is used to provide hydrogen-rich reformate to the NOx aftertreatment unit, containing a hydrocarbon-SCR catalyst, in order to improve its NOx reduction activity at low exhaust-gas temperatures. The reformer configuration and operating parameters have been examined in order to optimise the performance of the hydrocarbon-SCR catalyst, which is promoted by the presence of H2 but inhibited by CO. The length of the catalyst bed inside the reformer is a key factor in determining the extent to which the water-gas shift reaction can contribute to the reforming process, and therefore strongly influences the proportions of CO and H2 in the reformate. However, it is also necessary for the reactant ratios at the reformer inlet to be controlled in response to changes in the engine operating conditions. In practice, this means that the rate of fuel addition to the reformer needs to be optimised for different exhaust gas compositions and space velocities

    Performance, combustion and emissions of a diesel engine operated with reformed EGR. Comparison of diesel and GTL fuelling

    Get PDF
    This is the post-print version of the final paper published in Fuel. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.In this work, the effects of a standard ultra-low sulphur diesel (ULSD) fuel and a new, ultra-clean synthetic GTL (gas-to-liquid) fuel on the performance, combustion and emissions of a single-cylinder, direct injection, diesel engine were studied under different operating conditions with addition of simulated reformer product gas, referred to as reformed EGR (REGR). For this purpose various levels of REGR of two different compositions were tested. Tests with standard EGR were also carried out for comparison. Experiments were performed at four steady state operating conditions and the brake thermal efficiency, combustion process and engine emission data are presented and discussed. In general, GTL fuel resulted in a higher brake thermal efficiency compared to ULSD but the differences depended on the engine condition and EGR/REGR level and composition. The combustion pattern was significantly modified when the REGR level was increased. Although the extent of the effects of REGR on emissions depended on the engine load, it can be generally concluded that an optimal combination of GTL and REGR significantly improved both NOx and smoke emissions. In some cases, NOx and smoke emission reductions of 75% and 60%, respectively, were achieved compared to operation with ULSD without REGR. This offers a great potential for engine manufacturers to meet the requirements of future emission regulations.Shell Global Solutions UK, the Government of Castilla-La Mancha (Spain) and the Royal Thai Government
    • …
    corecore